IV Existance of Contact Structures
let M be a 3 -manifold
K a knot in M
$N=S^{\prime} \times D^{2}$ a neighborhood of K in M
$\alpha c \partial N=\partial \overline{M \backslash N}$ an embedded curve
$f: \partial\left(s^{\prime} \times D^{2}\right) \rightarrow \partial \overline{M \backslash N}$ a diffeomorphism sending $\{\rho t\} \times \partial D^{2}$ to α
α-Dean surgery on M along K is

$$
\begin{aligned}
M\left(K_{1} \alpha\right)=(\overline{M \backslash N}) & v_{f}\left(s^{\prime} \times D^{2}\right) \\
& \begin{array}{c}
\text { glue } p \in \partial\left(k^{\prime} \times D^{2}\right) \text { to } \\
f(p) \in \partial(\overline{M N N})
\end{array}
\end{aligned}
$$

Facts: 1) if f_{1}, f_{2} are 2 diffeomorphisms that send $\xi_{p}+3 \times \partial D^{2}$ to a then $(\overline{M \backslash N}) v_{f_{1}}\left(s^{\prime} \times D^{2}\right) \cong(\overline{\mu, N}) v_{f_{2}}\left(s^{\prime} \times D^{2}\right)$ 2.e. $M(K, \alpha)$ well-defined
2) any closed 3 -manifold M is obtacied from S^{3} by by Dean surgery on some link
exercise: prove (or look vp) these facts
note: $T^{2}=\partial N \subset \partial(\overline{M T N})$
there is a curve $\mu \subset \partial(\overline{M \backslash N})$ that bounds a disk

$$
\text { in } N=5^{i} \times D^{2}
$$

if K is null-homologous then there is a carve $\lambda \in \partial(\overline{M N N})$
such that $\lambda=\partial \Sigma, \Sigma$ a surface in $\overline{M \backslash N}$
exencose: $|\lambda \cap \mu|=1$
otherwise choose any λ on $\partial(\overline{M N})$ st. $\mid \lambda \cap \mu l=1$
note: λ determines a framing of K
exencrse: $[\lambda],[\mu]$ form a basis for $H,\left(s^{\prime} \times s^{\prime}\right)=\mathbb{Z} \otimes \mathbb{Z}$ $\partial\left(\frac{4}{M \backslash N}\right)$
so any $h \in H_{1}\left(S^{\prime} \times S^{\prime}\right)$ can be written $q[\lambda]+p[\mu]$
exercise: h can be realized by an embedded curve iff $p . g$ are relatively prime
now any diffeomophism $\phi: \partial\left(S^{\prime} \times D^{2}\right) \rightarrow \partial(\overline{M \backslash N})$ is determined upto isotopy by its action on

$$
H_{1}\left(\partial\left(S^{1} \times D^{2}\right)\right) \rightarrow H_{1}\left(\partial\left(S^{1} \times D^{2}\right)\right)
$$

ne. by a matrix
$\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$ with $a d-b c=1$
exenccse: Prove this
Hit: a simple closed curve on τ^{2} is determined, up to isotopy, by its class in $H_{l}\left(\tau^{2}\right)$ if 2 diffeomorphisms do the same thing on $\left(s^{\prime} \times\{p+3) \cup\left(\varepsilon_{p}+\right\} \times s^{\prime}\right)$ then they are isotopic (use any diffeomophism of ∂D^{2} extends to D^{2})
if α is an embedded curve in $\partial(\overline{\mu w})$ than

$$
[\alpha]=q[\lambda]+p[\mu]
$$

so diffeomorphism sending $\{p+\} \times \partial D^{2}$ to α is

$$
\left[\begin{array}{cc}
r & q \\
s & p
\end{array}\right] \text { wits } r p-q s=-1
$$

we denote $M\left(K_{1} \alpha\right)$ by $M_{k}\left(\frac{p}{q}\right)$
Th -1 (Martinet):
Any closed oriented 3-manifold admits a contact structure

Proof: given closed oriented 3-m anitold M from above we know M is obtacied from S^{3} by

Dehn surgery on some link in S^{3} we address case where $M=S_{K}^{3}(P(q)$ bat the general case will clearly follow $1^{\text {st }}$ can is top K so that if is transverse to $3_{\text {std }}$, by lemma III. 3
nd K has a standard neighborhood by $\pi \underline{m} \pi .3$
that is let $U=s^{1} \times \mathbb{R}^{2}=\mathbb{R}^{3} / z \mapsto z+1$
with $3=\operatorname{ker}(\cos r d z+r \sin r d \theta)$

$$
\text { let } S_{a}=\{(r, \theta, z) \mid r \leq a\}, \quad T_{a}=\partial S_{a}
$$

K has a neighborhood N st. N contactomorphic to s_{a} for some a (any a close to 0)
note: $\left(T_{a}\right)_{3}$ is nonsingular and has slope

$$
-\frac{1}{a} \cot a
$$

so $\left(2 \overline{s^{3} \backslash N}\right)_{3_{\text {std }}}$ has slope a^{\prime} some a' $3^{\text {rd }}$ glue in standard contact torus
specifically $\overline{S^{3} 1 N}$ has contact structure $?_{s t d} l_{M N}$ we glue $S^{\prime} \times D^{2}$ to $S^{3} W$ vii

$$
f: \partial\left(S^{\prime} \times D^{2}\right) \rightarrow \partial\left(\overline{S^{3}, N}\right)
$$

f^{-1} take fol ln of slope a' on $\partial s^{3} \backslash N$ to ce foll of slope b^{\prime} on $\partial\left(s^{\prime} \times D^{2}\right)$
now let b be such that $-\frac{1}{b} \cot b=b^{\prime}$ identify $S^{\prime} \times D^{2}$ with S_{b}
note: f takes $\left(\partial s_{b}\right)_{3}$ to $\left(\partial\left(s^{3} \backslash N\right)\right)_{\xi_{s+1}}$
so $T^{\text {m III. }} 5$ says f can be isotoped to be a contactomorphism
So can glue $\left(S^{3} \backslash N, r_{s t d}\right)$ and $(S, 3)$ via f to get a contact structure on M !
to be more rigoras should take $\overline{S^{3}\left(S_{a-\varepsilon}\right.}$ and $S_{b+\varepsilon}$, so there is a color neighbor hood to glue manifolds together

extend f to $T^{2} \times I$ and moke contactomorphism here
exercise: Give a second proof of existence of contact structures using the fact that all close oriented 3 -manifolds are covers of S^{3} branched oven some link
Hint: make branch locus transverse.
we can use this construction to do better!
Let $\operatorname{Dist}(M)=\left\{\right.$ all oriented plane fields on M\}) ~ C^{∞}-topologe

$$
\begin{aligned}
& \cong \text { \{all oriented line fiélds on } M\} \\
\operatorname{Cont}(M) & =\{\text { all contact structures om } M\}
\end{aligned}\left\{\begin{array}{l}
D_{\text {inst }}(M) \text { sections } \\
\text { of } G r_{2}(T M) \\
\text { Grassmann of } \\
2 \text {-planes in } T M
\end{array}\right.
$$

we have a natural inclusion map

$$
\operatorname{Cont}(M) \xrightarrow{i} D_{L s t}(M)
$$

Th쓴 (Lutz):

$$
\tau_{x}: \pi_{0}(\operatorname{cont}(m)) \rightarrow \vec{u}_{0}\left(D_{\operatorname{sit}}(M)\right) \text { is onto }
$$

this says every plane held is homotopic to a contact structure

Major Question: Is i_{*} infective?
If not understand $\tau_{k}^{-1}(x)$ for $x \in \bar{U}_{0}\left(D_{i} \bar{t}+(\mu)\right)$
Before proving this theorem we reed to better understand $\operatorname{Dist}(M)$, how big is $\pi_{0}(\operatorname{Dist}(M))$?
Fact: if M is a closed oriented 3 -manifold then

$$
\tau^{*} M \cong M \times \mathbb{R}^{3}
$$

you can see a proof of this in Kirby's book "The topology of 4 -manifolds"
fix a metric g (this is not really necissary)

$$
U(T M)=\text { unit tangent bundle }=M \times S^{2}
$$

$$
D_{1 s} f(M)=\{\text { oriented plane field }\} \underset{\cong}{\cong}\{\text { unit vector field }\}
$$

$$
v(x)=\text { unit positive }
$$

given $v \in \Gamma(U(\tau M))$ we have to i_{x}

$$
\begin{aligned}
v: \mu & \longrightarrow \mu \times s^{2} \\
p & \mapsto\left(\rho, f_{v}(\rho)\right)
\end{aligned}
$$

so v determined by $f: \mu \rightarrow s^{2}$

So we have $D_{1 s t}(M) \leftrightarrows\left\{\operatorname{maps} M \rightarrow S^{2}\right\}$
H corresp.
(correspondence depends on trivialization of τM, but not metric)

So $\pi_{0}(\operatorname{Dist}(M))=$ homotopy classes of mops $M \rightarrow s^{2}$

$$
=:\left[M_{1} S^{2}\right]
$$

example: $\left[s^{3}, s^{2}\right] \cong \pi_{3}\left(s^{2}\right) \cong \mathbb{Z}$
generated by the Hopt map
remark: we will see below that $\pi_{0}\left(D_{1} \bar{t}(M)\right)$ is always intrivito so $7 h^{\prime \prime} 2$ say all onentable 3 -manifold admit infinitely many different contact structwes!
a framed submanifold (V, F) of a manifold X is a submomitold NCX together with a trivialization F of the normal bundle of N in X
$\left(N_{1}, J_{1}\right)_{1}=0,1$, in X are framed cobordant if there is a framed submanifold $\left(W_{1}^{\prime} F^{\prime}\right)$ of $x \times[0,1]$ such that

$$
\left(N^{\prime}, \mathcal{I}^{\prime}\right) \wedge\left(X \times[i 3)=\left(N_{i}, \mathcal{F},\right)\right.
$$

lemma 3 (Thom-Pontryagin construction in 3-D):
$\left[M^{3}, s^{2}\right] \leftrightarrow\{$ framed cobordism classes of $1-\mathrm{mtd}$ sin $\mu\}$ H correspondence $\}=: \Omega_{1}^{f}(M)$

Proof: given $\phi: M \rightarrow S^{2}$
can homotop ϕ so ϕ is transuense to north pole $n \in S^{2}$
let $\gamma=\phi^{-1}(n)$ this is a 1 -mind in M
moreover note $d \phi_{x}: T_{x} \mu \rightarrow T_{n} S^{2}$ is onto since ϕ transuense to n
$f x$ a basis $v_{i} v_{2}$ for $T_{N} S^{2}=R^{2}$
now $\tilde{v}_{1}(x), \tilde{v}_{2}(x)$ perpendicular to $T_{x} \gamma\binom{$ fix }{ metric }
st. $d \phi_{x}\left(v_{1}^{2}(x)\right)=v_{1}$

(recall $T_{r} \gamma=\operatorname{ke}\left(d \phi_{x}\right)$ and $\left.d \phi_{x}\right|_{\left(\tau_{x} \gamma\right)^{\perp}}$ is comorphism)
so $\tilde{v}_{1}, \tilde{r}_{2}$ are two liseor independent sections of $\nu(\gamma)$ they give a framing if to γ
So $\left[M_{c} S^{2}\right] \xrightarrow{\Psi} \Omega_{1}^{f}(\mu)$ is a mg

$$
\phi \longmapsto(\gamma, \mathcal{F})
$$

exercise: show Ψ is well-defined
Now given $(\gamma, 7) \in \Omega_{l}^{f}(\mu)$ we need to find a mop ϕ
such that $\Phi(\phi)=(\gamma,-7)$
note: γ has a neighborhood $N=\gamma \times D^{2}$ given by framing
now define $\phi: N \rightarrow S^{2}$
to be

collapse
∂ to sou sh
to south pole
send origin to n
on each $\{p P\} \times D^{2}$ is $N=\gamma \times D^{2}$ define $\phi: \overline{M N} \rightarrow s^{2}: p \mapsto$ south pole
ϕ can be constructed to be smooth on interior of N and perturbed to be smooth st. $\phi^{-1}(n)$ still γ
exenusé: $\Psi(\phi)=(\gamma, J)$
so Ψ surjective
now suppose $\Psi\left(\phi_{0}\right)=\left(\gamma_{0}, \mathcal{F}_{0}\right), \Psi\left(\phi_{1}\right)=\left(\gamma_{1}, F_{1}\right)$
$\left(\gamma_{2}, J_{1}\right)$ framed cobordart viii (Σ, F)
exercise: if $\left(\gamma_{0}, F_{0}\right)=\left(\gamma, F_{1}\right)$, then show ϕ_{0} is homotopic to ϕ_{1}
erencise: in general, construct a homotopy

$$
M \times[0,1] \rightarrow s^{2} \text { from } \phi_{0} \text { to } \phi_{1}
$$

using $(5, F)$ just as we constructed ϕ above

So we know $\pi_{0}\left(D_{1 s t}\right) \stackrel{1-1}{\leftrightarrows} \Omega_{1}^{f}\left(M^{3}\right)$
lefts study $\Omega_{1}^{f}(M)$
set $\Omega_{1}(M)=\{$ cobordism classes of 1 -manifolds is $M\}$
same as $\Omega,{ }_{1}^{f}(m)$ but forget framing
lemma 4:

$$
\Omega_{1}(M) \underset{1-1}{\leftrightarrows} H_{1}(M)
$$

Proof: given $\gamma \in \Omega_{1}(M)$
we can "triangulate" (write as 1-complex)
so it gives a 1-cycle \therefore an element of $H_{2}(M)$
if γ_{0}, γ_{1} cobordant via surface $[<M \times\{0,1]$ project surface to M, triangulate to get a 2 -chain in $C_{2}(M)$
exercise: $\partial \sum_{1}=\gamma_{1}-\gamma_{2}$
${ }_{\text {as 2 -chain }}$
so γ, homologous to γ_{2}
and $\Omega_{1}(M) \xrightarrow{\Phi} H_{1}(M)$ well-detired
any $h \in H_{1}(M)$ is represented by the iniage of an S^{\prime},
so Φ clearly onto
now if $\Phi\left(\gamma_{0}\right)=\Phi\left(\gamma_{1}\right)$, then there is a 2 -chain c st.

$$
\partial c=\gamma_{1}-\gamma_{0}
$$

erenusé: can find another 2-chain c 'such that $C^{\prime}=$ image of triangulated surface Σ let $f: \Sigma \rightarrow[0,1]$ be smooth map st $f^{-1}(i)=\gamma_{i}$. now $\sum \rightarrow \mu \times[0,1]$

$$
p \longmapsto(p, f(\rho))
$$

is a map that can be perturbed to be smooth and self transrense
this means the iniage in $M \times\{0,1]$ is an immersed surface with transverse double points one may "resolve" the double ponits to get an embedded surface \sum^{\prime} in $M \times[0,1]$ st. $\partial \Sigma^{\prime}=\gamma_{0} u \gamma_{1}$

$$
\therefore \gamma_{1}=\gamma_{0} \text { is } \Omega_{1}(M)
$$

exencisé: fill is details of argument above
there is a natural mop $F: \Omega_{1}^{f}(M) \rightarrow \Omega_{1}(M)$
that just forgets the framing
lemma 4:
given $x \in \Omega_{1}(M)$,

$$
F^{-1}(x)=\mathbb{Z} / 2 d(\bar{\Phi}(x))^{\text {homology }} \text { class of } x
$$

where $d(y)$ is the divisibility of y in $H_{1}(M)$ modulo torsion
note: $0 \in H_{1}(M)$ for any M has divisibility 0
so $F^{-1}(0)=\mathbb{Z}$
\therefore all M^{3} have intriitely many homotopy classes of plane field and hence infinitely many contact structures by Th $^{m} 2$

Proof: given x a 1-submanifold is M
let 7 be a framing on x
and F_{n} is the framnig on x given by adding n right handed twist to 7
the map $h: \mathbb{Z} \rightarrow F^{-1}(x)$ is clearly on to
suppose $h(n)=h(m)$
so there is a framed surface $\left(\left[, \exists^{\prime}\right)\right.$ in $M \times[0,1]$

$$
\begin{aligned}
\text { st. } & \left(\Sigma, \mathcal{F}^{\prime}\right) \cap(M \times\{0\})=\left(x, F_{n}\right) \\
& \left(\Sigma, \mathcal{F}^{\prime}\right) \cap(M \times\{1\})=\left(x, F_{m}\right)
\end{aligned}
$$

let $T=$ closed surface in $M \times S^{\prime}=M \times\{0.1] / M \times\{0\} \sim M \times\{1\}$ given by Σ
exercise: show $T \cdot T=m-n$
self-mitersection
ne have T trassuensely intersect a copy of
τ and count nitersection points with sign
 Σ ' think about how to make $\Sigma '$ a closed surface in $M \times S^{\prime}$
let $C=x \times s^{\prime} \subset \mu \times s^{\prime}$
note: $m-n=T \cdot T=[(T-C)+C] \cdot[(T-C)+C]$

$$
=(T-C) \cdot(T-C)+2(T-C) \cdot C+\underbrace{C \cdot C}_{\ddot{0}} \text { use framing on } x
$$

Claim: $(T-C) \cdot(T-C)=0$
aided note $H_{2}\left(M \times s^{\prime}\right)=\left(H_{2}(M) \otimes H_{0}\left(S^{\prime}\right) \oplus\left(H_{1}(M) \otimes H_{1}\left(s^{\prime}\right)\right)\right.$
(1) $\mathrm{H}_{0}(\mu) \circlearrowleft \mathrm{H}_{2}\left(S^{\prime}\right) \rightarrow 0$
now $(T-C) \cap\left(\mu \times \varepsilon_{p}+3\right)=0$
(since

$$
\begin{aligned}
& T \cap(M \times\{p+\})=x \\
& \operatorname{C}(M \times\{p+\})=x)
\end{aligned}
$$

so $T-C \in H_{2}(M) \otimes H_{0}\left(S^{\prime}\right)$
(since any non-zero ell in $H_{1}(m) \otimes H_{c}\left(s^{\prime}\right)$ has non-zeno intersection with $M_{\times\{p t\}}$)
so $T-C$ is homologous to $S C M$
$S \cdot S=O$ (push copy of S in S^{\prime} direction)

$$
\text { so } \begin{aligned}
m-n & =(T-C) \cdot(2 C) \\
& =(T-C) \cdot(2 x)
\end{aligned}
$$

sine $T-C$ homologous to surface in M
So $m-n$ is divisible by $2 d(x)$
Conversely, suppose $2 d(x) \neq 0$ (re x not torsion)
let y be a primitive class in $H_{1}(M)$
such that $x=d(x) y$
P.D. (Y) is a generator of $H^{2}(M)$

Poncaré Dual
so \exists a surface α such that

$$
\begin{aligned}
& y \cdot \alpha=(P \cdot D \cdot(y))(\alpha)=1 \\
& \therefore \quad 2 x \cdot \alpha=2 d(x)
\end{aligned}
$$

let τ be a surface is $M \times S^{\prime}$ representing

$$
C+\alpha
$$

note: $(c+\alpha) \cdot(c+\alpha)=2 c \cdot \alpha=2 x \cdot \alpha=2 d(x)$ cut $M \times s^{\text {l }}$ along $M \times\{p+\}$ to get $M \times\{0,1\}$ and T becomes a cobordism from x to x and framings differ by $z d(x)$ (argue as above)
so $h: Z \rightarrow F^{-i}(x)$ is onto with kernel $2 d(x)$ Z
we now return to the proof of $T^{n}=2$
Th쓰 2 (LutE):

$$
\tau_{x}: \pi_{0}(\operatorname{cont}(n)) \rightarrow \bar{u}_{0}\left(D_{c s^{-}}(n)\right) \text { is onto }
$$

we need a construction called Lutz twist
let $\mathbb{R}^{2} \times s^{\prime}=\mathbb{R}^{3} / z \mapsto z+2 \pi$
with contact structure $\}=\operatorname{ker}(\cos r d z+r \sin r d \theta)$
$T=\{(0,0)\} \times S^{\prime}$ is a transverse curve

$$
S_{a}=\{(r, \theta, z) \mid r \leq a\}
$$

$\left(\partial S_{a}\right)_{3}$ is linear foliation of slope $-\frac{1}{a} \cot a$

if K a transrease knot in $(M, 3)$, then if has a ubhd N contactomorphic to S_{a} for some $a \in(0, \pi)$
let $b \in(\pi, 2 \pi)$ s.t. $\left(S_{b}\right)_{3}=\left(S_{a}\right)_{3}$
the result of replacing $N=S_{a}$ by S_{b} is called a half Lotz turgt on T
replacing $N=S_{a}$ with S_{c}, for $c \in(2 \pi, 3 \pi)$ sot.
$\left(S_{c}\right)_{i}=\left(S_{a}\right)_{3 \text {, }}$ is called a full Lotz twist
note: Lute trusting does not change M
lemma 5:
let $\left(m, 3^{\prime}\right)$ be the result of performing a half-Lutz twist on a transverse knot K in $(M, 3)$
then $F\left(3^{\circ}\right)=F(3)-[k]$
where F is map from lemma 4 and $[k]$ is the homology class of K
if k is nuhl-homologous and $(r, z) \in \Omega_{1}^{f}(m)$ corresponding to $\}$ then $\left(\gamma, \mathcal{F}_{\text {sec }}\right)$ corresponds to 3^{\prime} where 7_{n} is framing 7 with n right-handed twists

Proof of $T_{h}{ }^{m} 2$:
by $T h \geq 13$ some contact structure 3 on M
suppose 3 corresponds to $(\gamma, 7)$
given some other $\left(\gamma^{\prime}, \gamma^{\prime}\right)$ let K be a transverse knot that realizes the homology class $[\gamma]-[\gamma ']$
lemma 5 says the result of half Lutz twisting ? along K is associated to the framed manifold $\left(\gamma_{1}^{\prime}, 7^{\prime \prime}\right)$
let U transverse unknot with $s k=-1$ (push off of \mathcal{V})
T be tranvense right handed trefoil with $5 l=1$
(push off of ∞)
half Lutz twisting on U does not change γ 'but sends $7^{\prime \prime}$ to $7_{-1}^{\prime \prime}$
while twisting on K sends $\mathcal{F}^{\prime \prime}$ to $\mathcal{F}_{+1}^{\prime \prime}$
so we can realize any framing
Proof of Lemma 5:
Check back later!

